Locally Decodable Codes
نویسنده
چکیده
Locally decodable codes are a class of error-correcting codes. Errorcorrecting codes help ensure reliable transmission of information over noisy channels. Such codes allow one to add redundancy, or bit strings, to messages, encoding them into longer bit strings, called codewords, in a way that the message can still be recovered even if a certain fraction of the codeword bits are corrupted. In typical applications of errorcorrecting codes the message is first partitioned into small blocks, each of which is then encoded separately. This encoding strategy allows efficient random-access retrieval of the information, since one must decode only the portion of data in which one is interested. Unfortunately, this strategy yields poor noise resilience, since, when even a single block is completely corrupted, some information is lost. In view of this limitation it would seem preferable to encode the whole message into a single codeword of an error-correcting code. Such a solution improves the robustness to noise but is hardly satisfactory, since one needs to look at the whole codeword in order to recover any particular bit of the message. Locally decodable codes are codes that simultaneously provide efficient random-access retrieval and high noise resilience by allowing reliable reconstruction of an arbitrary bit of the message from looking at only a small number of randomly chosen codeword bits. Local decodability comes at the price of certain loss in terms of code efficiency. Specifically, locally decodable codes require longer codeword lengths than their classical counterparts. This book introduces and motivates locally decodable codes, and discusses the central results of the subject, with the main focus on the recent constructions of codes from families of “matching” vectors.
منابع مشابه
A Note on Amplifying the Error-Tolerance of Locally Decodable Codes
We show a generic, simple way to amplify the error-tolerance of locally decodable codes. Specifically, we show how to transform a locally decodable code that can tolerate a constant fraction of errors to a locally decodable code that can recover from a much higher error-rate. We also show how to transform such locally decodable codes to locally list-decodable codes. The transformation involves ...
متن کاملExponential Lower Bound for 2-Query Locally Decodable Codes
We prove exponential lower bounds on the length of 2-query locally decodable codes. Goldreich et al. recently proved such bounds for the special case of linear locally decodable codes. Our proof shows that a 2-query locally decodable code can be decoded with only 1 quantum query, and then proves an exponential lower bound for such 1-query locally quantum-decodable codes. We also exhibit q-query...
متن کاملLocally Decodable Codes: A Brief Survey
Locally decodable codes are error correcting codes that simultaneously provide efficient random-access to encoded data and high noise resilience by allowing reliable reconstruction of an arbitrary data bit from looking at only a small number of randomly chosen codeword bits. Local decodability comes at the price of certain loss in terms of code efficiency. Specifically, locally decodable codes ...
متن کاملLocal Testing and Decoding of High-Rate Error-Correcting Codes∗
We survey the state of the art in constructions of locally testable codes, locally decodable codes and locally correctable codes of high rate.
متن کاملLocally decodable codes
Locally decodable codes (LDCs) are error correcting codes that simultaneously provide efficient random-access to encoded data and high noise resilience by allowing reliable reconstruction of an arbitrary data bit from looking at only a small number of randomly chosen codeword bits. In this work we survey three known families of LDCs and compare their parameters.
متن کاملPrivate Locally Decodable Codes
We consider the problem of constructing efficient locally decodable codes in the presence of a computationally bounded adversary. Assuming the existence of one-way functions, we construct efficient locally decodable codes with positive information rate and low (almost optimal) query complexity which can correctly decode any given bit of the message from constant channel error rate ρ. This compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011